SNAP Data Digitization and Compression with Cric3
Chris Stoughton July 23, 2008; August 6, 2008; June 13, 2009

This note describes software that emulates the digitization and lossy compression of SNAP CCD data.
The design of the SNAP mission has readout performed by electronics in the Cric3 board to produce
one 16-bit number per pixel. Computing on board will reduce this to 10 (or so) bits per pixel using a
lossy compression algorithm. Further computing will apply a lossless compression algorithm to
achieve an overall compression factor (from 16 bits per pixel) of 3. The actual compression ratio
achieved is the product of the lossy compression ratio and the lossless compression ratio. Choosing
the number of bits for lossy compression sets the first ratio: for 16 bits compressed to 10 bits, the
compression ratio is 1.6. The compression ratio of the lossless compression depends on the distribution
of data values.

This is by no means the only way to digitize and compress imaging data from space missions.
However, it is a convenient way to test the effect of digitization and lossy compression on shape
measurement used for weak lensing. The algorithm implemented in hardware in the Cric3 board, and
the lossy compression strategy chosen here were designed with these measurement in mind. We could
make modest improvements in this implementation by fine-tuning the algorithms, and they can also be
de-tuned so they do far worse! However, the default implementation described here serves as an
existence proof for mission planners of a conservative estimate of the performance of this strategy at
various values of the compression ratio.

The new version of the program adds poisson noise, read noise, and data from a cosmic ray simulation.

Digitization

The number of electrons read out is digitized to Analog-to-Digital Units (ADU) by multiplying by a
gain (in electrons/ADU) and adding a bias (in ADUs). The CRIC3 electronics uses one of three pairs
of gain and bias, depending on the number of detected electrons in the pixel. The transformation from

electrons to ADU is shown in Figure 1.
The gain and bias values are digitize 2A14=16384

not precisely known yet, but 15500
16,000
these are reasonable values. 15500
15,000

The calibration process for 14500

14,000 34574 403176

SNAP will measure these 13,500 1 i

13,000

values in the as-built boards ey
and monitor the values during ~_ %"
the mission. The number of BT
electrons at the thresholds

(3457.4 between regions 0 and

1; 40317.6 between regions 1 7000

8500 ADU = (int) (electrons/gain + bias + 0.5)

digitized value (ADU,

and 2) need to be determined s ?ndex=0 0819290
from the as-built boards. 5000 !"dEX_ L 8:0r—8067.9
4500 index=2 16.0 8129.5

These design values are e
established in boards that have 3,000
undergone extensive o

: 0 25,000 50,000 75,000 100,000 125,000

prototyping and testing. input value (electrons)

windex=0 #index=1 ¢ index=2

Lossy Compression

The square-root algorithm for lossy data compression described in Gowen and Smith (Rev. Sci. Instr.
2003) transforms an input value to a compressed value as:

compressed = INT(0.5+a+sqrt(b*uncompressed-c)) ()

where a,b,c are constants specified by the maximum and minimum values of the input and compressed
values. For example, compressing Cric3 data to 10 bits yields the values in Table 1 for a,b,c in the three
regions

uncompressed compressed calculated
minimum maximum minimum maximum a b c
6192 13107 0 512 -0.5 37.91 234735.5
8499 13107 512 768 511.5 14.22 120874.7
10649 16384 768 1024 767.5 11.43 121690.1

Table 1. a,b,c values used in 16->10 bit lossy compression of Cric3 data. The minimum values are
inclusive and the maximum values are exclusive.

The compression transformation applies eq. (1) with the appropriate values of a,b,c to calculate the
compressed value. The decompression algorithm returns the average of all uncompressed values that
yield the compressed value determined by eq. (1). The option to smear the decompressed values by
randomly selecting one of the uncompressed values that yields the compressed value is in the code, but
not enabled by default.

This algorithm can be tuned in two ways. First, the number of bits in the compressed value can be
changed. Doubling the compressed minimum and maximum values, for example, will compress to 11
bits. A second tuning option is to reallocate the number of compressed values in each range. The
default scheme uses %2 of the

available values in low range, and 1
U4 in each of the other ranges. 1000
This allocation can be tuned by EZE
changing the compressed 550
minimum and maximum values in ¢
each range. =

Cric3Compress

7o
Figure 2 shows the result of the &
lossy compression as a function of -
input number of electrons. In
range=0, where the number of
electrons is low, the mapping is by
nearly linear. The characteristic 0
“square-root” shape is more 250
evident in ranges 1 and 2. @

550
500
450

compressed value

400

150
100
50

[
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000 140,000

input value (electrons)

B range=0 ® range=1 range=2

The result of digitization, lossy compression, and restoration (decompression with averaging and
conversion from ADU to electrons) is unbiased, as shown in Figure 3.

Figure 2. The compressed 10-bit value (unitless) vs. the input value
(electrons) for compression/decompression.

Cric3Compress: Restored vs. Input
16

15
14
13
12
11

10

restored value

L] 1 2 3 4 5 1] 7 8 2 10 11 1z 13 14 15
iNnput value (electrons)

[= restored e 1rue]

Figure 3. The restored (conversion from electrons to ADU, compressed per Figure 2., uncompressed
with averaging, and conversion from ADU to electrons) vs. the input value in electrons.

Note that where multiple input values map to the same compressed value, the restored value is the
average of all of the input values. The codec process introduces no bias to a uniform input distribution.
The lossy compression ex vi termini does not reproduce the input parameters exactly. The difference
between the true input value and the codec value has a similar effect on the data as do read noise in the
readout electronics or Poisson statistics. Figure 4 illustrates the code noise as a function of input
number of electrons.

Cric3Compress
1.1

1.0
0.4

0.8

{restored-original)/sqrioriginal) value

-0.8
-0.9
-1.0

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 B0,000 90,000 100,000 110,000 120,000 130,000
input value (electrons)

|I range=0 # range=1 range=2|

Figure 4. The difference between the restored and original values, as a function of the original input
number of electrons. The difference is normalized by the Poisson noise (assuming Gaussian statistics),
so values near 1.0 contribute roughly the same amount of noise as Poisson statistics.

For range=0, the extra noise from the codec process is much less than that from Poisson statistics. For
brighter objects, the extra noise approaches the noise from Poisson statistics.

Tuning the codec algorithm changes the result shown in Figure 4. Changing the number of bits in the
compressed values from 10 to 11 will reduce the difference across the entire range. Increasing the
number of compressed values used in a range (by setting the compressed minimum and maximum
values in Table 1) reduces the noise in that range. This will increase the noise in another range, where
the number of compressed values are decreased by the same amount.

Running the Code

First, you need to get the code. The only prerequisite is to have Sun java 1.6 or higher installed on your
computer. You can verify that this is installed with the following command:

$ java -version

java version "1.6.0"

Follow the instructions on the build.snap.nersc.gov site here:
http://build.snap.nersc.gov:2440/reports/cvs/snap.eclipse.help.plugin/html/snap_faq.html#ql1

Please note that you need a username/password combination to access the web site and code. The
instruction are copied here:

1. Go to http://build.snap.nersc.gov:2440/

2. Click on "All Current Builds" and you will see a list of build named by date and time. In this
example, I describe code build on December 12, 2007 at 11:00:01 PM. You should use the
most current version.

3. In the first row, click on snapSim-current-20071204.230001.tgz to download the .tgz file. The

exact name depends on the date and time of the build.

Untar it (tar xzf snapSim-current-20071204.230001.tgz)

This makes a director called snapSim-current-20071204.230001

Put that directory in your path, and call that directory LIB_DIR

7. .JeagRunner.sh $LIB_DIR gov.fnal.eag.sim.pixel.Cri3Compress --help

ok

If you run out of memory, add -Xmx1000m after $LIB_DIR to tell it to use more memory.

Note that the following instructions are updated as of June 13, 2008 to reflect a new way to run the
code. Here is an example of how I run the code on my laptop.

$./eagRunner.sh $LIB_DIR gov.fnal.eag.sim.pixel.Cric3Compress \
/home/stoughto/compressTest/compress_test.fits \

/home/stoughto/compressTest/compress_test_08.fits \
--expTimeKeyword 300 \

--skyPerSecond 0.2 \

--showBernsteinParameter 60,7.7 \
--randomSeedIndex 123\

--nBits 8\

--cosmicFileName \

/home/stoughto/snap/chrisb-cosmics/CX_3500x3500x10.5_S4.0_1.3.6_N20258_T100_t300.fit \
--doDiagnostics true

Here is what the program does:
1. Read in the input file, which is in units of electrons/second

2. Find the exposure time. If expTimeKeyword is the name of a keyword in the FITS header, use
the value of that line as the exposure time. Otherwise, parse the value as a double. In the
example, I’m set the exposure time to 300 seconds. Multiply the input values by the exposure
time.

3. Multiply the sky rate per second by the exposure time, and add it to the input values.

4. If a file with a cosmic ray exposure is specified, read it in. This file is assumed to be in a total

number of electrons in the exposure, NOT in counts per second, so simply add the values from
the cosmic ray exposure to the input file.

Seed a poisson random number generator and a normal random number generator with a seed
pointed to by the randomSeedIndex. Replace each input value with a random number selected
from the random poisson distribution, with mean of the input value. Add a random normal
number to each value chosen from a normal distribution, with sigma defined by the read noise.

Replace each value with the result of the compress and decompress operation.
Write the values to the outputFileName
If showBernsetinParameter is true, calculate

P ,=log, (skySigmalbitsPerStep)

If doDiagnostic is true, plot a histogram of the input pixel values. Also, write the result of this
lossy compression followed by lossless huffman encoding. Measure the resulting file size, and
calculate the total compression ratio, and write some information to a file named by the
outputFileName with a .log suffix.

What does the sky look like?

For an image with mean number of electrons/pixel of 8, digitized with a read noise of 4.0 electrons, the
histogram of 1EG6 values is shown in Figure 5.

i

1040 4 B -
104-1
104-2

104-3

1044 |
104-5 ‘
25 30 35 40

n=1000000 trueSky=8.0 readNoise=4.0

-20 -15 -10 -5 1] 5 10 15 20
nElectrons

I—true — noise Cric3|

Figure 5. Histogram of sky values: original values; with read noise; and with read noise and codec.

The original values are the red histogram, and are what we would see if each pixel was a perfect photon

counter with no read noise. Sadly, this is not how CCDs work, so what we see before digitization is the
blue histogram. After restoring the compressed data, we have the green histogram. Simple sky-finding
algorithms rely on the continuity of the blue histogram (no spikes) and fail on codec data. Measuring a
simple mean and error in the mean assuming gaussian statistics recovers the true mean sky value
without bias, as shown in Table 2.

Histogram Calculated Mean Error in Calculated Mean
original, true values 8.00057 0.00283
with read noise added 7.99847 0.00489
with read noise and Cric3 codec |8.00201 0.00491

Table 2. Calculated sky values for original and codec values

The increase in error of the mean due to Cric3 codec is < 1% of the error increase due to read noise.

What is the compression factor?

The effective compression factor is due to a compression factor from lossy and lossless compression.
For lossy compression it does not depend in the input data values. Encoding 16-bit data to 10-bit data
has ¢ compression factor of 1.6. A lossless compression algorithm's compression factors depends on
the data set. Huffman coding (D.A. Huffman, "A Method for the Construction of Minimum-
Redundancy Codes", Proceedings of the I.LR.E., September 1952, pp 1098-1102) constructs a lookup
table based on the frequency of input values. Its compression factor is lowest for data with uniformly
distributed input values and improves for images where the majority of the input values are similar.
This, in general, is the case for astronomical images, where most pixels values are at or near the sky
value, with some exceptional pixels having a high value due to galaxies, bright stars, or cosmic ray
noise. The Huffman compression factor is measured with images composed of a constant sky level
with Poisson statistics, and optionally, one bright star that saturates a few hundred pixels; one UDF
image scaled by exposure time; and one cosmic ray image, produced by Chris Bebek, from the set in
Table 3.

Cosmic Ray File Name Landau | # cosmics | thickness | expTime
(um) (sec)

blank -- 0 - -
CX_3500x3500x10.5_S4.0_L0.0_N20258_T200.fit 0.0 20258 200 300
CX_3500x3500x10.5_S4.0_L3.6_N13505_T100_t200.fit 3.6 13505 100 200
CX_3500x3500x10.5_S4.0_L3.6_N13505_T150_t200.fi 3.6 13505 150 200
t
CX_3500x3500x10.5_S4.0_L3.6_N13505_T200_t200.fi 3.6 13505 200 200
t
CX_3500x3500x10.5_S4.0_L3.6_N20258_T100_t300.fi 3.6 20258 100 300
t
CX_3500x3500x10.5_S4.0_L.3.6_N20258_T150_t300.fi 3.6 20258 150 300
t
CX_3500x3500x10.5_S4.0_L.3.6_N20258_T200_t300.fi 3.6 20258 200 300

t

Table 3. Cosmic Ray images used to measure the compression factor. All images have rms diffusion of
4.0 um in 10.5 um pixels. The exposure time sets the number of events.

blank

1045

1044

1043

dil

1042

1041

1040

-lo0 -75 -50 -25 25 50 75 100 125 150

wvalue

175

22

75

Ot il

5 2

300 325

350

375 400

— cosmic=blank expTime=300 sky=0.150000 addUdf=false star=false

— cosmic=hblank expTime=3200 sloy=0.150000 addUdf=false star=true
cosmic=hblank expTime=300 sky=0 150000 addUdf=true star=Tfalse
cosmic=kblank expTime=300 sky=0. 150000 addUdf=true star=true

Figure 6: Distribution of pixel values for no cosmic rays, with UDF image and/or one bright star.

1046

1045

1044

dh

1043

1042

1041

blank

Wl b b el

0 10,000

MUk

30,000 40,000 50,000

0,000 70,000 80,000

wvalue

90,000 100,000 110,000 120,000 130,0

— cosmic=blank expTime=300 sky=0.150000 addUdf=false star=false

— cosmic=blank expTime=300 sky=0.150000 addUdf=false star=true
cosmic=blank expTime=300 sky=0.150000 addUdf=true star=false
cosmic=blank expTime=3200 sly=0.150000 addUdf=true star=true

Figure 7: Same as Figure 7, for the entire input range.

Figures 6 and 7 show the distribution of values for an (unrealistic) image with no cosmic rays, with
UDF and/or a bright star image included. The compression factors for these four images, for the Cric
compression to 10 bits followed by Huffman coding, are in Table 4.

include UDF include Bright Star bytes out compression factor
no no 1235497 4.1441
no yes 1239853 4.1295
yes no 1241734 4.1233
yes yes 1245762 4.1099

Table 4. Compression factor for an image with no cosmic rays and constant sky level. Adding the UDF
image, one bright star, and both images degrades the compression factor.

Cosmic rays dominate the image, increasing the range of values to encode. Figure 8 shows frequency
of non-zero values in the cosmic ray files. The resulting compression factors are in Table 5. As
expected the image with the most pixels with cosmic ray flux compresses the least.

1044

1043

= 1042
TR
LI”lln'llll 0
|r '_|I'If'lh .1[|. I
| 'I |'|,|'l" Il'. 1 N
104 J il "‘I] 'll' '.

1040

T

100 200 300 400 500 600 700 8OO 900 1,000 1,100 1,200 1,300 1400 1500 1,600 1,700 1,800 1,900 2,00

wvalue

— CX_3500x%3500x10.5 54.0_L0.0_N20258_T200.fit — CX_3500x3500x10.5_54.0_L3.6_N13505_T200_1200.fit
CH_3500x3500x10.5_54.0_L3.6_N20258_T200_t300.fit CX_3500x3500x10.5_54.0_L3.6_MN13505_TL100_ 1200 fit

— CH{_3500x3500x10.5 54.0_L3.6_N20258_T100_t300.fit Cx_3500x3500x10.5_54.0_L3.6_N13505_T150 1200 fit
CK_3500x3500x10.5 54.0_L3.6_N20258_T150_1300.fit

Figure 8. Frequency of non-zero pixel values for the cosmic ray files.

Cosmic Ray File Name bytes out compression factor
blank 1245762 4.1099
CX_3500x3500x10.5_S4.0_10.0_N20258_T200.fit 1520542 3.3672
CX_3500x3500x10.5_S4.0_L3.6_N13505_T100_t200.fit 1370667 3.7354
CX_3500x3500x10.5_S4.0_L3.6_N13505_T150_t200.fi 1404572 3.6452
t
CX_3500x3500x10.5_S4.0_L3.6_N13505_T200_t200.fi 1456971 3.5141
t
CX_3500x3500x10.5_S4.0_L3.6_N20258_T100_t300.fi 1414171 3.6205
t
CX_3500x3500x10.5_S4.0_L3.6_N20258_T150_t300.fi 1469380 3.4845
t
CX_3500x3500x10.5_S4.0_L3.6_N20258_T200_t300.fi 1525734 3.3558
t

Table 5: Compression factors for Cric compression to 10 bits followed by Huffman coding, for an
image with UDF images and a bright star on the cosmic ray background.

Another variable that impacts the compression factor is the number of bits used in the Cric sqrt
algorithm. Varying this from the value of 10 bits used to this point up to 16 bits reduces the
compression factor. Table 5 summarizes these values for the least compressible image formed with
cosmic ray file name CX_3500x3500x10.5_S4.0_L3.6_N20258_T200_t300.fit.

Cric compression bits bytes out compression factor
10 1525734 3.3558
11 1840416 2.7820
12 2133343 2.4000
13 2163355 2.3667
14 2180711 2.3479
15 2182839 2.3456
16 (no sqrt transform) 2183560 2.3448

	SNAP Data Digitization and Compression with Cric3
	Digitization
	Lossy Compression
	Running the Code
	What does the sky look like?
	What is the compression factor?

